Shortest path and Schramm-Loewner Evolution
نویسندگان
چکیده
We numerically show that the statistical properties of the shortest path on critical percolation clusters are consistent with the ones predicted for Schramm-Loewner evolution (SLE) curves for κ = 1.04 ± 0.02. The shortest path results from a global optimization process. To identify it, one needs to explore an entire area. Establishing a relation with SLE permits to generate curves statistically equivalent to the shortest path from a Brownian motion. We numerically analyze the winding angle, the left passage probability, and the driving function of the shortest path and compare them to the distributions predicted for SLE curves with the same fractal dimension. The consistency with SLE opens the possibility of using a solid theoretical framework to describe the shortest path and it raises relevant questions regarding conformal invariance and domain Markov properties, which we also discuss.
منابع مشابه
Introduction to Schramm-Loewner evolution and its application to critical systems
In this short review we look at recent advances in Schramm-Loewner Evolution (SLE) theory and its application to critical phenomena. The application of SLE goes beyond critical systems to other time dependent, scale invariant phenomena such as turbulence, sand-piles and watersheds. Through the use of SLE, the evolution of conformally invariant paths on the complex plane can be followed; hence a...
متن کاملMinkowski content of the intersection of a Schramm - Loewner evolution ( SLE ) curve with the real line
The Schramm-Loewner evolution (SLE) is a probability measure on random fractal curves that arise as scaling limits of twodimensional statistical physics systems. In this paper we survey some results about the Hausdorff dimension and Minkowski content of SLEκ paths and then extend the recent work on Minkowski content to the intersection of an SLE path with the real line. Dedicated to the memory ...
متن کاملSchramm-Loewner evolution and Liouville quantum gravity.
We show that when two boundary arcs of a Liouville quantum gravity random surface are conformally welded to each other (in a boundary length-preserving way) the resulting interface is a random curve called the Schramm-Loewner evolution. We also develop a theory of quantum fractal measures (consistent with the Knizhnik-Polyakov-Zamolochikov relation) and analyze their evolution under conformal w...
متن کاملA note on the boundary exponent and rate of escape for the Schramm-Loewner evolution
We give an estimate for the probability that a Schramm-Loewner evolution (SLE) curve of parameter κ ∈ (4, 8) hits a disconnected set connected to the boundary. This is used to estimate the rate of escape. The main estimate concerns the relationship between the Hausdorff content of a set and its extremal length.
متن کاملSchramm-Loewner Equations Driven by Symmetric Stable Processes
We consider shape, size and regularity of the hulls Kt of the chordal Schramm-Loewner evolution driven by a symmetric α-stable process. We obtain derivative estimates, show that the domains H \Kt are Hölder domains, prove that Kt has Hausdorff dimension 1, and show that the trace is right-continuous with left limits almost surely.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014